
新媒易动态
NEWS CENTER
NEWS CENTER
2021-12-06
数据分析分析的到底是什么?在不同的场景下,数据分析可能会有所不同。一般来说,作为用户运营的数据分析,可能会分为以下几种:
这一类分析更加侧重用户的特征分析,希望能从某一类人群的特性中找到共性,从而更好地理解这些用户。我们常见的xx人群用户画像分析、活动人群分析等。
这一类分析的核心用户就是某些用户的特殊性,从而更好地指定用户运营的策略。比如,我们想针对会员用户的续费去进行分析,就会针对性地去看到期续费用户和到期没有续费用户之间的差别,看看中间是哪些因素在影响着用户的续费,用户更倾向于在什么时间节点什么场景下去完成续费这个动作,从而后续通过策略更大化地影响未续费的用户。
人群流失预警也是同样的道理,通过流失用户在平台上的最后一次行为去分析流失用户在平台上预流失前的行为特征(当然这类用户分析可能需要通过建模等一系列操作),从而通过运营策略更好地影响这批用户。
这一类的分析就比较偏向于纯数字类的分析了。上了什么样的策略,策略曝光了多少人群,这些人群的转化效果怎么样,比原来提升了多少。
这一类分析的关键是需要明确口径和取数字段,什么时间段在哪张数据表里去取什么样的字段。
当然,这一类分析一般会和人群分析结合起来一起去看,人不同的用户对于策略的不同反应程度。当然,如果只需要一个最终的数据结果,那么只取数也完全足够了。
我们自己在使用产品的过程中,可能会发现某一类特殊场景还存在一定的运营空间。所以针对这一类的特殊场景,我们就需要去看这一类特殊场景覆盖的人群有多少,这一类人群的特点是什么。最好是结合后续想要给这部分用户制定的策略结合来看,看看这个策略的空间有多大。
一般来说,在有些公司,简单的数据需求可能会由运营同学自己取数(一般是1-2个表的连接,简单的取数需求可能会由运营自己进行)。但是一般来说,涉及以上3类比较复杂的数据分析需求,就需要运营提需求提到数据分析的同学那里去处理。那么问题来了,如何才能提出更加有效的数据分析需求呢?
一个有效的数据分析需求一定离不开这3要素:分析的目的、取数的口径、取数的维度和字段。
分析的目的是便于数据分析的同学给业务同学提供更加有效的建议和思路。比如,针对会员用户,我们想要去看这一批用户给业务线带来了多少订单、GMV和收益,有多少是开通会员这个动作带来的增量。所以在这过程中,我们可能会通过会员用户开通前后的对比或相似用户去进行对比,去看看哪一类的对比的变量仅只有开通会员这一个动作,通过控制变量的办法去研究变量对于结果的最终影响。
取数的口径是需要明确,去取什么时间段的什么样的数据才作为合理和科学。
取数的维度和字段,有些字段可能是通用的,不用告诉数分的同学他们也知道,但是有些字段可能是业务特有的,需要明确地告知数分的同学。取数的时候,需要明确告知数分同学,我们想要什么维度的什么样的分析。比如想要会员用户在最近半年业务线的消费情况:包含订单、收入和收益,在这过程中,就需要明确消费情况到底是什么,需要去取哪些字段。