
新媒易动态
NEWS CENTER
NEWS CENTER
2021-08-25
当今大数据时代,三分技术,七分数据,得数据者得天下,数据是新的原油。而即使获得相同的原油,但是不同的企业由于技术的差异,能够从原油中萃取出来的价值也是不一样的。
一般对大数据的价值来说,大家耳熟能详的主要是数据化管理、数据驱动精细化运营等,这些主要还是以分析应用的场景为主,除此之外,大数据还可以借助AI的能力,把价值更加极致地发挥出来。
我们知道AI最主要的实现方式是机器学习,而机器学习的本质是通过大量的数据分析挖掘、模型训练后,让机器具备人的学习能力或思辨能力,也可以理解为数据是原材料,AI是生产工具,AI与数据结合,创造新的生产力。
当然这个过程也离不开云计算提供强大的算力资源支持,很多人也把这种结构关系称之为ABCI,即:AI、BigData、Cloud、IOT。
对于一直做数据可视化产品数据产品经理同学,是否遇到过这样的困惑“自己所做的事情抽象一下,其实就是指标+维度+可视化图表,做来做去只是业务场景的变化”,如果想要有创新的突破该何去何从呢?
同样,做自助BI产品,是不是就是数据建模、拖拽式分析、配置化的可视化Dashboard或大屏的构建,随着产品基础功能的逐步完善,新增的基本上都是些小众的或边边角角的需求,此次,产品的下一步该如何规划?
在“数据可视化怎样才有灵魂”一文中,详细地分享过,数据可视化从数据是什么、为什么、怎么做的三个层次,对于数据是什么是基础的大数据处理、计算、查询、展示,而对于为什么、怎么做,则需要将更多人的分析思路和流程融入到产品中。
比如对于指标波动除了业务可以明确确定的规则外,当业务波动受时间周期、天气等多种因素影响时,如何确定合理的监控阈值,判定了指标异常后,又要如何进行自动化的归因分析,找出关键影响维度或指标? 此时,就需要更多的借助AI的能力了。
在2018年的时候,结合WolframAlpha(国外的一款基于知识图谱的搜索引擎)的思想,尝试过将业务经营指标、维度构建数据知识图谱,通过NLP技术对用户输入内容进行解析,如用户输入“华东大区昨日毛利”,可以直接返回指标数值、同环比、下一级维度拆分等等。
后来阿里QuickBI推出智能小Q,百度Sugar推出AI数据问答,其他BI厂商比如亿信华辰,也有智问功能。后期可以扩展结合语音识别的能力,想象一下,老板在开车的时候,想知道今天的业务经营情况,打开移动端的智能分析平台,语音输入“今天经营状况如何”,想知道的相关数据,从主要到次要,都可以直接语音播报了。
现阶段来说,智能问答属于最高层次的需求,但可以借助AI的能力,把智能分析的过程做的更深入一些,未来在资源允许、场景明确,则可以尝试更多数据机器人的能力。