仅只有未实名的,新媒易不收取任何费用,公益非盈利机构
24小时服务热线: 4000-162-306
请扫码咨询

新媒易动态

NEWS CENTER

影响用户留存的相关性因素分析

2021-10-30

影响用户留存的相关性因素分析

1. 搭建影响用户留存的指标体系

可以选取用户静态画像、活跃行为类指标、付费行为类指标、以及其他核心行为类指标作为指标体系。也可以参考用研团队针对流失和留存用户的调研结果,为指标体系搭建提供新的思路。

一般的,用研团队对流失和留存用户的调研提纲如下:

1)流失用户

  • 调研其年龄、性别、职业、城市、圈层等社会学画像;
  • 深度挖掘其为什么流失的原因;
  • 回归意愿如何;
  • 以及流失的去向是哪里;
  • 他们对竞品和本品的使用体验差异点在哪里。

2)留存用户

  • 社会学画像;
  • 留在本品的核心驱动力;
  • 通过什么方式被吸引到本品;
  • 来源渠道。

巧妇难为无米之炊,数据是分析师必备的武器。用户调研结束后,数据分析师要尝试对调研结果中用户强烈吐槽或者十分满意的功能体验,尽可能抽象成可观测、可度量的数据指标。

比如用户吐槽刷到内容平台 APP 广告太频繁,可以将广告性质内容的曝光次数作为指标,纳入下一阶段的定量分析中;用户认为平台最大的优势在于有金币领取,可以将金币等指标体系纳入定量分析中。

2. 影响留存的重要指标筛选

影响用户留存或者流失的因素非常多,需要从众多指标中筛选出重要度较高的几个指标。以下有两种方法可以提供参考。

1)相关性分析

选出与留存率相关性系数较高的前几个行为,作为关键行为候集;同时还要考虑发生该行为的用户的渗透率高低、留存率提升幅度的高低,即要保证最终的留存人数处于较高的水平(留存人数 = 人数*渗透率*留存率 )。

假设某个社交媒体平台 APP ,流失用户被定义为近7日未启动APP的用户。影响留存的指标、各指标与留存率间的相关系数、行为渗透率、留存率提升幅度见下表(具体数值均为模拟数据,请勿参考)。



从上面的四象限图可以发现,播放短视频、金币页面访问等行为的渗透率较高,且留存率提升幅度也较高,因此可以作为影响留存的关键行为候选集。

2)基于各类树模型

各类树(决策树、随机森林、GBDT等)模型训练结束后,可以输出模型所使用的特征的相对重要度,可以解释哪些因素是对预测有关键影响,因此可以帮助我们快速找出对用户留存影响度高的关键因素。

① 特征选择

  • 用户画像类特征(年龄、性别、城市、手机品牌、手机型号、平台角色、是否安装竞品、竞品APP安装数量、新增渠道类型);
  • 活跃类标签(近 7 天APP启动次数、近 7 天APP使用时长、近 7 天活跃天数、首次活跃距今天数、末次活跃距今天数);
  • 消费类行为标签(近 7 天内容曝光次数、近 7 天内容点击次数、近 7 天内容播放时长);
  • 互动类行为标签(近 7 天点赞次数、关注次数、评论次数、转发次数、收藏次数);
  • 付费类行为标签(近 7 天打赏主播次数、打赏金额、充值金额);
  • 金币激励类标签(近 7 天金币提现金额、签到次数、得金币数、访问福利中心页面次数)。
相关推荐